												REVIS	SIONS								
				L	TR				DESC	RIPTI	ON				D	ATE			APPR	OVED	
_			•••	10115													.,				
Prepared	in acc	cordan	ce with	n ASME Y1	4.24												Ve	endor i	item di	rawing	
REV										l											
PAGE																					
REV																					
PAGE																					
REV STA	\TI '0		REV																		
			REV		1	2	3	4	5	6	7	8	9	10							
DMIC N/	ES			E			3	4	5	6	7	8	9		LANG	D AND	MAR	ITIME			
PMIC N/	ES				L ED BY		3 Nguy		5	6	7	8	C	DLA OLUN	IBUS	, OHIC	432	18-39	90		
	ES A	drawii	PAG	E PREPAR	ED BY				5	6			C	DLA OLUN	IBUS	, OHIC	432		90		
Original o	ES A	drawing DD	PAG	E	ED BY	Phu H.		en	5	6	TIT	LE	C http	DLA OLUN	//BUS w.lan	, OHIC dandn	0 432 naritir	18-399 ne.dla	90 <u>a.mil</u> /		
Original o	A date of	DD	PAG	E PREPAR	ED BY D BY F ED BY	Phu H.	Nguy	en en	5	6	TIT!	LE CROC	http	DLA OLUN D://ww	MBUS w.land	, OHIC dandn TAL-	0 432 naritir LINE	18-39 ne.dla	90 a.mil/ 16-B		
Original o	A date of Y MM	DD	PAG	E PREPAR CHECKE APPROV	ED BY F ED BY Th	Phu H. Phu H.	Nguy Nguy s M. He	en en	5	6	TIT	LE CROC SPS	http	DLA OLUN D://ww	MBUS w.land	, OHIC dandn TAL-	0 432 naritir LINE	18-39 ne.dla	90 a.mil/ 16-B	SIT,	
Original o	A date of Y MM	DD	PAG	E PREPAR CHECKE APPROV	ED BY F ED BY Th	Phu H. Phu H.	Nguy	en en ess	5	6	TIT	LE CROC	http	DLA COLUM C://ww JIT,	MBUS w.lan DIGI ADC,	, OHIC dandn TAL- MO	LINE	18-39 me.dla AR, ITHI(90 a.mil/ 16-B		
Original o	A date of Y MM	DD	PAG	E PREPAR CHECKE APPROV	ED BY F ED BY Th	Phu H. Phu H.	Nguy	en en	5	6	TIT	LE CROC SPS	http	DLA COLUM C://ww JIT,	MBUS w.lan DIGI ADC,	, OHIC dandn TAL-	LINE	18-39 me.dla AR, ITHI(90 a.mil/ 16-B		
Original o	A date of Y MM	DD	PAG	E PREPAR CHECKE APPROV	ED BY F ED BY Th	Phu H. Phu H.	Nguy	en en ess	5	6	TIT MIC 1 M	LE CROC SPS	c http CIRCU Puls	DLA COLUM C://ww	MBUS w.lan DIGI ADC,	, OHIC dandn TAL- MO	LINE	18-39 me.dla AR, ITHI(90 a.mil/ 16-B		

AMSC N/A 5962-V026-13

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance 16-bit, 1 MSPS PulSAR ADC microcircuit, with an operating temperature range of -55°C to +125°C.
- 1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

 V62/12640
 01
 X
 E

 Drawing number
 Device type (See 1.2.1)
 Case outline (See 1.2.2)
 Lead finish (See 1.2.3)

1.2.1 Device type(s).

Device typeGenericCircuit function01AD7980-EP16-bit, 1 MSPS PulSAR ADC

1.2.2 <u>Case outline(s)</u>. The case outlines are as specified herein.

 Outline letter
 Number of pins
 JEDEC PUB 95
 Package style

 X
 10
 JEDEC MO-187-BA
 Mini Small Outline Package

1.2.3 <u>Lead finishes</u>. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator

A Hot solder dip
B Tin-lead plate
C Gold plate
D Palladium
E Gold flash palladium
Z Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12640
		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

Analog inputs: IN+, IN- to GND	$-0.3 \text{ V to V}_{REF} + 0.3 \text{ V or } \pm 130 \text{ mA}$
Supply voltage:	
REF, V _{IO} to GND	-0.3 V to +6 V
V _{DD} to GND	-0.3 V to +3 V
V_{DD} to V_{IO}	+3 V to -6 V
Digital inputs to GND	$-0.3 \text{ V to V}_{IO} + 0.3 \text{ V}$
Digital outputs to GND	
Storage temperature range	-65°C to 150°C
Junction temperature	150°C
θ _{JA} Thermal impedance (Case outline X)	200°C/W
θ _{JC} Thermal impedance (Case outline X)	44°C/W
Lead temperature:	
Vapor phase (60 sec)	215°C
Infrared (15 sec)	220°C

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP95 - Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at http://www.jedec.org or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201.)

3. REQUIREMENTS

- 3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
 - A. Manufacturer's name, CAGE code, or logo
 - B. Pin 1 identifier
 - C. ESDS identification (optional)
- 3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/12640	
		REV	PAGE 3	

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

- 3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
 - 3.4 <u>Design, construction, and physical dimension</u>. The design, construction, and physical dimensions are as specified herein.
 - 3.5 Diagrams.
 - 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
 - 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
 - 3.5.3 <u>Load circuit for digital interface timing</u>. The load circuit for digital interface timing shall be as shown in figure 3.
 - 3.5.4 <u>Voltage levels for timing</u>. The voltage levels for timing shall be as shown in figure 4.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12640
		REV	PAGE 4

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Test conditions		Limits	3	Unit
		$V_{DD} = 2.5 \text{ V}, V_{REF} = 5.0 \text{ V}$ $2.3 \text{ V} \le V_{IO} \le 5.5 \text{ V}$	Min	Тур	Max	
		-55°C ≤ T _A ≤ +125°C				
		unless otherwise noted				
Resolution			16			Bits
Analog input	.		,	T		
Voltage range		IN+ - IN-	0		V_{REF}	V
Absolute input voltage		IN+	-0.1		V _{REF} + 0.1	V
		IN-	-0.1		+0.1	
Analog input CMRR		f _{IN} = 100 kHz		60		dB
Leakage current @ 25°C		Acquisition phase		1		nA
Accuracy						
No missing codes			16			Bits
Differential linearity error		REF = 5 V	-0.9	±0.4	+0.9	LSB <u>2</u> /
Differential infeatity error		REF = 2.5 V		±0.55		
Integral linearity error		REF = 5 V	-1.5	±0.6	+1.5	
integral inteatity error		REF = 2.5 V		±0.65		
Transition noise		REF = 5 V		0.6		
Transition noise		REF = 2.5 V		1.0		
Gain error, T _{MIN} to T _{MAX} 3/				±2		
Gain error temperature drift				±0.35		ppm/°C
Zero error, T _{MIN} to T _{MAX} <u>3</u> /			-0.62	±0.08	+0.62	mV
Zero temperature drift				0.54		ppm/°C
Power supply sensitivity		$V_{DD} = 2.5 \text{ V} \pm 5\%$		±0.1		LSB 2
Throughput				•		
Conversion rate		$V_{IO} \ge 2.3 \text{ V up to } 85^{\circ}\text{C},$ $V_{IO} \ge 3.3 \text{ V above } 85^{\circ}\text{C up to } 125^{\circ}\text{C}$	0		1	MSPS
Transient response		Full scale step			290	ns
AC accuracy	I	1 tan ooan otop				
-		$V_{REF} = 5V$		92		dB <u>4</u> /
Dynamic range		$V_{REF} = 2.5V$		87		
Oversampled dynamic range		$f_0 = 10 \text{ kSPS}$	İ	111		
	ONE	$f_{IN} = 10 \text{ kHz}, V_{REF} = 5 \text{ V}$		91		
Signal to Noise Ratio,	SNR	$f_{IN} = 10 \text{ kHz}, V_{REF} = 2.5 \text{ V}$		86.5		
Spurious Free Dynamic Range,	SFDR	$f_{IN} = 10 \text{ kHz}$		-110		
Total Harmonic Distortion,	THD	$f_{IN} = 10 \text{ kHz}$		-114		
·		$f_{IN} = 10 \text{ kHz}, V_{REF} = 5 \text{ V}$		91.5		
Signal to (Noise +Distortion),	SINAD	$f_{IN} = 10 \text{ kHz}, V_{REF} = 2.5 \text{ V}$		87.0		

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/12640	
		REV	PAGE 5	

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/

Test	Symbol	Test conditions		Limits		Unit
		$V_{DD} = 2.5 \text{ V}, V_{REF} = 5.0 \text{ V}$ $2.3 \text{ V} \le V_{IO} \le 5.5 \text{ V}$ $-55^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$ unless otherwise noted	Min	Тур	Max	
Reference	•					
Voltage range			2.4		5.1	V
Load current		1 MSPS, REF = 5 V		330		μA
Sampling dynamics						
-3 dB input bandwidth				10		MHz
Aperture delay		$V_{DD} = 2.5 \text{ V}$		2.0		ns
Digital inputs						
	VIL	V _{IO} > 3 V	-0.3		0.3 x V _{IO}	V
	V_{IH}	V _{IO} > 3 V	0.7 x V _{IO}		$V_{10} + 0.3$	
Logic level	V_{IL}	V _{IO} ≤ 3 V	-0.3		0.1 x V _{IO}	
	V _{IH}	V _{IO} ≤ 3 V	0.9 x V _{IO}		V _{IO} + 0.3	
	I _{IL}		-1		+1	μA
	I _{IH}		-1		+1	
Digital outputs						
Data format		Serial 16 bits straight binary				
Pipeline delay		Conversion results available immediately after completed conversion				
	V _{OL}	I _{SINK} = 500 μA			0.4	V
	V _{OH}	I _{SOURCE} = -500 µA	V _{IO} - 0.3			
Power supply					•	•
V_{DD}			2.375	2.5	2.625	V
V _{IO}		Specified performance	2.3		5.5	
V _{IO} range			1.8		5.5	
Standby current <u>5</u> / <u>6</u> /		V_{DD} and $V_{IO} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$		0.35		nA
Power dissipation		10 kSPS throughput		70		μW
i owei dissipation		1 MSPS throughput		7.0	10	mW
Energy per conversion				7.0		nJ/samp
Temperature range	1		, <u> </u>		ı	
Specified performance		T _{MIN} to T _{MAX}	-55		+125	°C

See footnote at end of table.

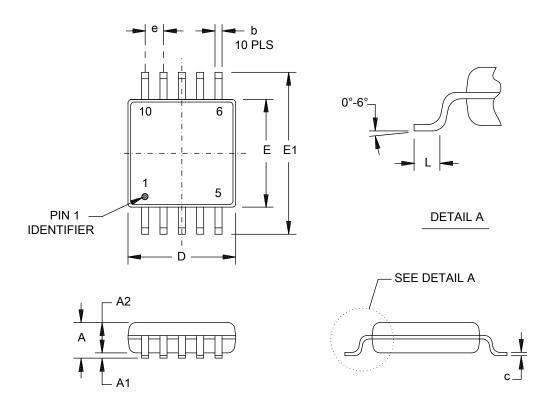
DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/12640	
		REV	PAGE 6	

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions		Limits		Uni
		$2.37 \text{ V} \le \text{V}_{DD} \le 2.63 \text{ V}$	Min	Тур	Max	
		$3.3 \text{ V} \leq \text{V}_{10} \leq 5.5 \text{ V}$				
		-55°C ≤ T _A ≤ +125°C				
		unless otherwise noted				
Timing specifications (see FIGURE 2 and 3 for load cond	dition)		I			
Conversion time: CNV rising edge to data available	t _{CONV}		500		710	ns
Acquisition time	t _{ACQ}		290			
Time between conversions	tcyc		1000			
CNV pulse width (CS Mode)	t _{CNVH}		10			
		V _{IO} above 4.5 V	10.5			
SCK period (CS Mode)	t _{SCK}	V _{IO} above 3 V	12			
		V _{IO} above 2.7 V	13			
		V _{IO} above 2.3 V	15			
		V _{IO} above 4.5 V	11.5			
SCK period (chain mode)	tsck	V _{IO} above 3 V	13			
		V _{IO} above 2.7 V	14			1
		V _{IO} above 2.3 V	16			
SCK low time	t _{SCKL}		4.5			
SCK high time	tsckh		4.5			
SCK falling edge to data remains valid	t _{HSDO}		3			
		V _{IO} above 4.5 V			9.5	
SCK falling edge to data valid delay	t _{DSDO}	V _{IO} above 3 V			11	
		V _{IO} above 2.7 V			12	
		V _{IO} above 2.3 V			14	
CNV or SDI low to SDO D15 MSB valid (CS Mode)	t _{EN}	V _{IO} above 3 V			10	
		V _{IO} above 2.7 V			15	
CNV or SDI high or last SCK falling edge to SDO high impedance (CS Mode)	t _{DIS}				20	
SDI valid setup time from CNV rising edge	t _{SSDICNV}		5			
SDI valid hold time from CNV rising edge (CS Mode)	t _{HSDICNV}		2			_
SDI valid hold time from CNV rising edge (Chain Mode)	t _{HSDICNV}		0			1
SCK valid setup time from CNV rising edge (Chain mode)	tssckcnv		5			4
SCK valid hold time from CNV rising edge (Chain Mode)	t _{HSCKCNV}		5			4
SDI valid setup time from SCK falling edge (Chain mode)	t _{SSDISCK}		2			4
SDI valid hold time from SCK falling edge (Chain Mode)	thsdisck		3			4
SDI high to SDO high (Chain mode with Busy Indicator)	t _{DSDOSDI}				15	丄

^{1/} Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

^{6/} During the acquisition phase.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12640
		REV	PAGE 7

 $[\]underline{2}$ / LSB means least significant bit. With the 5 V input range, 1 LSB is 76.3 μ V.

These specifications include full temperature range variation, but not the error contribution from the external reference.

^{4/} All specifications in dB are referred to a full scale input FSR. Tested with an input signal at 0.5 dB below full scale, unless otherwise specified.

^{5/} With all digital inputs forced to VIO or GND as required.

Dimensione										
Dimensions										
Symbol	Millimeters		Symbol	Milli	meters					
	Min	Max		Min	Max					
Α		1.10	D/E	2.90	3.10					
A1	0.05	0.15	E1	4.65	5.15					
A2	0.75	0.95	е	0.50) BSC					
b	0.15	0.30	L	0.40	0.70					
С	0.13	0.23								

NOTES:

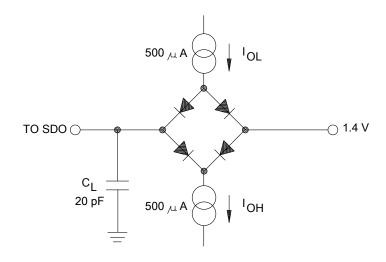
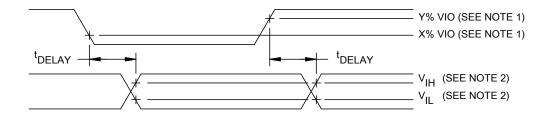

- All linear dimensions are in millimeters.
 Falls within JEDEC MO-187-BA.

FIGURE 1. Case outline.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12640
		REV	PAGE 8

Case outline X				
Terminal number	Terminal symbol	Terminal number	Terminal symbol	
1	REF	10	VIO	
2	V_{DD}	9	SDI	
3	IN+	8	SCK	
4	IN-	7	SDO	
5	GND	6	CNV	

FIGURE 2. Terminal connections.

IGURE 3. Load circuit for digital interface timing.

NOTES:

- 1. For $V_{IO} \le 3.0$ V, X = 90 and Y = 10; For $V_{IO} > 3.0$ V X = 70 and Y = 30. 2. Minimum V_{IH} and maximum V_{IL} used. See Digital Inputs specifications in table I.

FIGURE 4. Voltage levels for timing.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12640
		REV	PAGE 9

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

- 6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
- 6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
- 6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number
V62/12640-01XE	24355	AD7980SRMZ-EP-RL7 <u>2</u> /

^{1/} The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

2/Z = RoHS compliant part

<u>CAGE code</u> <u>Source of supply</u>

24355 Analog Devices 1 Technology Way

Norwood, MA 02062-9106

P.O. Box 9106

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12640
		REV	PAGE 10